
Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices
Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin Rovinski,

Haojie Ye, Yuhan Chen, Ronald Dreslinski, Trevor Mudge
University of Michigan, Ann Arbor, MI

ABSTRACT
While systolic arrays are widely used for dense-matrix opera-

tions, they are seldom used for sparse-matrix operations. In this
paper, we show how a systolic array of Multiply-and-Accumulate
(MAC) units, similar to Google’s Tensor Processing Unit (TPU), can
be adapted to efficiently handle sparse matrices. TPU-like accelera-
tors are built upon a 2D array of MAC units and have demonstrated
high throughput and efficiency for dense matrix multiplication,
which is a key kernel in machine learning algorithms and is the
target of the TPU. In this work, we employ a co-designed approach
of first developing a packing technique to condense a sparse matrix
and then propose a systolic array based system, Sparse-TPU, abbre-
viated to STPU, to accommodate the matrix computations for the
packed denser matrix counterparts. To demonstrate the efficacy of
our co-designed approach, we evaluate sparse matrix-vector multi-
plication on a broad set of synthetic and real-world sparse matrices.
Experimental results show that STPU delivers 16.08× higher perfor-
mance while consuming 4.39× and 19.79× lower energy for integer
(int8) and floating point (float32) implementations, respectively,
over a TPU baseline. Meanwhile, STPU has 12.93% area overhead
and an average of 4.14% increase in dynamic energy over the TPU
baseline for the float32 implementation.

CCS CONCEPTS
• Computer systems organization→ Systolic arrays.
KEYWORDS
Systolic array, sparse matrix processing, application-specific hard-
ware, hardware-software codesign, hardware accelerators, sparse
matrix condensing

ACM Reference Format:
Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park,
Austin Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, Trevor Mudge.
2020. Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices. In 2020
International Conference on Supercomputing (ICS ’20), June 29-July 2, 2020,
Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3392717.3392751

1 INTRODUCTION
The slowing down of cost-effective scaling in integrated circuits

has prompted computer architects to turn to accelerators to deliver

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392751

improvements in performance and power efficiency [2]. However,
this approach, if followed blindly, will ultimately hit the “accel-
erator wall”, where simply adding accelerators is not a feasible
solution [9]. The choice and design of accelerators needs to balance
power, performance, and area, against the expected usage.

Two-dimensional (2D) systolic arrays have been proposed for
energy-efficient execution of dense matrix operations [18]. One
state-of-the-art systolic array solution is Google’s Tensor Process-
ing Unit (TPU) [18, 33]. Its core is a 2D systolic array of 256×256
identical Processing Elements (PEs) that perform 8-bit Multiply-and-
Accumulate (MAC) arithmetic. The latest version (v3) has 128×128
elements that supports floating point arithmetic.

The advent of cloud computing and large datacenters has led to
an increasing interest in linear algebra applications that also oper-
ate on sparse data structures, such as matrices, where the majority
of entries are zero [8]. For instance, one of the most widely adopted
applications in datacenters is large-scale graph processing, which
is prevalent in fields ranging from social science to machine learn-
ing. Most of these problems directly translate into iterative sparse
matrix-vector operations [31]. Algorithms that operate on sparse
data take advantage of the sparsity by employing data structures
that only store the non-zero elements, thus eliminating any redun-
dant operations that involve the zero elements [1, 35]. However,
such sparse algorithms have some disadvantages; they typically use
data structures (e.g. compressed sparse row) that are more complex
than simple vectors or matrices, which results in a higher number
of memory accesses per useful computation. Also, because the as-
sociated data structures are not easily vectorized, these sparse data
structures are not compatible with conventional systolic paradigms.
Hence, incorporating the ability to handle sparse linear algebra in
systolic arrays is both challenging and rewarding, since it extends
the use of the same accelerator architecture for both sparse and
dense applications.

The root cause of inefficiency in a systolic array when han-
dling sparse matrices stems from the fact that the PEs containing
zero-valued matrix entries perform MAC operations that do not
contribute to the final result. A recent systolic array based solution
was proposed by Kung et al. [20], referred to as KMZ in the rest of
this paper. Their design is a systolic array that uses packed sparse
matrices. The work presented in this paper improves upon this by
addressing several limitations. The first is scalability arising from
the use of a fixed number of parallel buses through each column of
the 2D array. To limit the impact of the buses, they are bit-serial.
This in turn leads to the second limitation: the system only supports
integer arithmetic, thus failing to cater to applications, e.g. scientific
computing, that require high numeric precision.

This paper presents Sparse-TPU, abbreviated to STPU, a com-
prehensive framework that maps sparse data structures to a 2D
systolic-based processor in a scalable manner. The result is a TPU-
like processors [18] that can also handle sparsematrices. To improve

https://doi.org/10.1145/3392717.3392751
https://doi.org/10.1145/3392717.3392751
https://doi.org/10.1145/3392717.3392751

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

the utilization of the systolic array when tackling matrices with
a wide range of sparsity and size, we propose a scalable matrix
packing algorithm to reduce the number of zero-valued entries
mapped into the array. We also explore the trade-off when handling
collisions (i.e. columns having one/more elements with the same
indices) in the packing algorithm. A collision-free constraint could
be too strict and prevent compact packing. The resulting algorithm
exhibits high packing efficiency across a broad set of sparse matrices,
where packing efficiency is defined as the ratio of density of the
uncompressed sparse matrix to that of the packed sparse matrix.
To handle packed matrices we propose an enhanced PE design. It
is based on a MAC function unit augmented with simple input
matching and holding capabilities to perform conditional MAC
operations.

In summary, we make the following contributions.

(1) We propose an algorithm to efficiently pack sparse matrices
by merging columns that allows collisions and significantly
reduces the number of zero-valued entries mapped to the
systolic array.

(2) We present a 2D systolic array design that employs condi-
tional execution to efficiently handle sparse matrices with
a high degree of sparsity, while achieving TPU-like perfor-
mance on dense matrices.

(3) We evaluate our design on a suite of synthetic sparse ma-
trices, as well as real-world matrices spanning multiple do-
mains from the SuiteSparse collection [4].

On average, STPU achieves a speedup of 16.08×, while consuming
4.39× and 19.79× lower energy for integer (int8) and floating point
(float32) implementations, respectively, over a TPU baseline.

2 SPARSE MATRIX PACKING
The study of sparse matrices dates to the early days of computing

when it was critical to save storage and operation count [7]. More
recently, cloud computing and storage which operate on massive
datasets have increased the importance of graph algorithms based
on sparse matrix vector multiplication [3, 31]. Additionally, the
trend of pruning in Deep Neural Networks (DNNs) [15, 16] has
resulted in sparse data structures showing up in machine learning
applications. These new applications often employ more compact
formats of storage to save power as well as off-chip memory band-
width.

The most widely used sparse matrix format is the Compressed
Sparse Row (CSR) format [11], or its counterpart the Compressed
Sparse Column (CSC) format. CSR consists of three distinct arrays:
vals, cols, and row-ptrs. vals is a contiguous array of all the non-zeros
in the matrix, organized in row-major order, and cols contains the
column indices of the corresponding elements in vals. The row-ptrs
hold the start indices of each row of the matrix in the cols/vals
arrays. While CSR allows for fast row accesses and efficient storage
of sparse data, it is incompatible with most existing systolic algo-
rithms, since traditional systolic computation is designed around
deterministic, fixed-length inputs.

One approach to overcome these shortcomings is to pack the
columns of a sparse matrix to create a denser matrix. One of the
earliest works that incorporate merging of sparse rows/columns

Sparse Matrix

(a) (b)

Packed Sparse Matrix

73 37 68 17 4 80 60 15

6

82 60 62

22 21

59 66

33 24

57 51 99

87 50

14

87

57

33

59

22

60

99

24

66

62

14

73 68 17 37 80 60 4 15

50

51

21

6

82

Figure 1: a) Sparse matrix mapping on the TPU and b)
sparse matrix packing and mapping on STPU. The offline
packing algorithm packs the columns 𝐶𝑖 of the original
sparsematrix𝑊𝑖 𝑗 to form themulti-column groups𝐺𝑖 of the
packed matrix𝑊𝑖 𝑗_𝑝𝑎𝑐𝑘 and the corresponding input vector
is packed to form element vector groups. For acceleration,
the groups 𝐺𝑖 are mapped vertically on STPU.

into a denser format was done by Tarjan and Yao [32]. More re-
cently, KMZ proposed packing sparse columns of a filter matrix in
a transformed Convolutional Neural Networks (CNNs) to produce
denser matrices [20]. We improve upon their solution by providing
better scalability on sparse matrices with larger sizes, and elimi-
nating the need to have multiple buses through the columns in the
systolic array design (see Section 6).

In the rest of this section, we first describe a naïve algorithm
to produce packed matrices. We then augment this algorithm to
improve column packing for large sparse matrices with higher
density. Note that the sparse matrix packing is conducted offline, and
loaded into the systolic array in the same manner as the TPU [18].

2.1 Basic Column Packing Algorithm
The most straightforward packing approach is a greedy algo-

rithm. It tries to pack as many columns into the multi-column
groups as possible. The algorithm selects a candidate column and
packs it into a group as long as there is no collision between this
column and any other column in the packed group. A collision be-
tween two columns occurs when they have a non-zero entry at the
same row index. When a collision occurs between the next column
to be packed and all existing multi-column groups, a new group
is created to hold the conflicting column. This process stops once
every column has been processed.

Fig. 1 illustrates how the columns of an example 8×8 sparse
matrix can be packed to form a more compact 8×3 matrix. Each
of the three resulting multi-column groups consists of elements
from several columns of the original matrix. E.g. the leftmost multi-
column group, 𝐺0, is the product of packing original columns 𝐶0,
𝐶2, and 𝐶3. While this does not result in a fully dense matrix (i.e.

Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices ICS ’20, June 29-July 2, 2020, Barcelona, Spain

0 200 400 600 800 1000

Column length

0

0.2

0.4

0.6

0.8

1

P
ro

a
b

a
b

ili
ty

 o
f

c
o

lli
s
io

n

R=0.05

R=0.1

R=0.2

(a)

......

Partition0

......

......

......

Partition1

Partition2

Partition3

Original Packing Partition-wise Packing

(b)
0.

00
1

0.
00

2

0.
00

4

0.
00

8
0.

01
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35

 1

 10

100

D
e

n
s
it
y
 i
m

p
ro

v
e

m
e

n
t

Original packing

Partition-wise packing

(c)
Figure 2: Graphical illustration of the probability of collision with different column size for three densities, (b) Illustration of
original packing and partition-wise packing and (c) Density improvement under original packing and partition-wise packing

Packing
config.

Relaxed
collision
packing

Collision-free
packing

Packed
groups

N_ITER,
MAX_COLLISION_ROW,
MAX_COLLISION_GROUP

Packed
groups

Collision-aware packing
Output
matrix

Input
matrix

...
.

N_iteration
 > N_ITER

No

Yes

N_iteration++

(a)

C0C1C2 C3C4C5 M0M1M2R0R1R2 G0G1G2

Left: Unpacked sparse matrix Mid: Partial merged matrix Right: Packed matrix

(b)
0.

00
1

0.
00

2

0.
00

4

0.
00

8
0.

01
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45

 1

 10

100

D
e

n
s
it
y
 i
m

p
ro

v
e
m

e
n

t

Partition-wise packing

Collison-aware + Partition-wise packing

(c)
Figure 3: (a) Two-step collision aware packing. Step 1: Relaxed-collision packing is performed iteratively to process the matrix
entries producing multi-column groups. Step 2: Collision-free algorithm packs the residual columns/entries to packed multi-
column groups. (b) Illustration of the relaxed-collision step. (c) Density improvement with collision-aware packing.

one with no zeros), our experiments demonstrate packing efficiency
of up to 718× in our example sparse matrices.

2.2 Optimizations For More Efficient Packing
The packing strategy has a direct impact on the overall latency

and energy when performing sparse matrix computation on a sys-
tolic array. To improve the greedy algorithm, we propose two
algorithm-level optimizations to produce a denser packed matrix:
partition-wise packing and collision-aware packing.

Partition-wise Packing. For two columns of a random sparse
matrix, the probability of collision is 𝑃 = 1 − (1 − 𝑅2)𝑁 , where
𝑅 is the density of the sparse matrix and 𝑁 is the matrix column
size. As shown in Fig. 2a, the probability of collision increases
logarithmically with matrix column length 𝑁 . Even a very sparse
matrix (e.g. 0.05) can have a very high collision rate (91.18%) when
the column length exceeds 1,000. The high occurrence of collisions
limits the efficiency of the packing algorithm. Employing partition-
wise packing can improve the packing efficiency further. It is not
necessary to pack the whole column for a large sparse matrix,
because the number of PEs in the systolic array is limited and the
packed sparse matrix has to be split into blocks the size of the
systolic array before mapping onto the array, .

Partition-wise packing effectively reduces the length of packing
candidates (to the length of the systolic array), leading to improved
packing density, because shorter columns reduce the probability
of collisions. Fig. 2b illustrates the difference between the origi-
nal method and the partition-wise method, where columns with

matching colors are the candidates to be packed. The sparse matrix
is first partitioned vertically by the length of the systolic array,
then column packing is performed on each partition. Finally, the
packed partitions are further divided horizontally into blocks that
are mapped on the systolic array. Fig. 2c compares the density
improvement of original packing method and partition-wise pack-
ing method for 1,000×1,000 sparse matrices with varying densities.
Partition-wise packing achieves 13.83× higher density than the
naïve packing method.

To support partition-wise packing, minor changes are made to
the way the SpMV vector is input. With naïve packing, the packing
strategy of input elements remains the same across all partitions,
which means the groups of input elements sent to a column in the
systolic array remains the same across all partitions. For partition-
wise packing, since each partition is packed independently, the
grouping strategy of input elements for one partition will be differ-
ent from another.

Collision-aware Packing. We notice that when the density is
higher than 0.2, it is hard to pack columns due to inevitable colli-
sions (a probability of 0.9946 that collisions will occur even under
128 vertical partitioning). Statistical analysis of occurred collisions
shows that only a handful collisions prevent columns from merging
with each other. To further improve packing efficiency, we relax
the collision-free constraint and adopt a less conservative pack-
ing method to enable column packing for sparse matrices with
higher density. Specifically, when deciding on whether a column
can be packed into a multi-column group, we adopt a relaxed re-
quirement: that the total number of collisions should be within a

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

2

3

4

3

5

1

2

3

4

4

6

5

5 64 7

(0) (0)

(0) (0)

(0)(0)

(0) (0)

Figure 4: The basic operation of the TPU performing SpMV.
The number 𝑛 in the top left corner indicates that the cor-
responding PE performs a MAC operation at the nth cycle.
Zero entries are directly mapped onto the array in TPU.

pre-specified bound, and that only one collision is allowed per row
in a multi-column group.

In the proposed collision-aware scheme, we propose a two-step
packing algorithm (Fig. 3a). In the first step, relaxed-collision pack-
ing is performed in an iterative way (𝑀𝐴𝑋_𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁_𝑅𝑂𝑊 sets
the maximum number of allowed collisions per row of the multi-
column group and 𝑁_𝐼𝑇𝐸𝑅 indicates the number of iterations that
relaxed collision packing method is invoked, and the two parame-
ters are set to one and two, respectively, based on empirical observa-
tions in our experiments). The iterations are performed with tighter
requirement. We use 15 and 4 as𝑀𝐴𝑋_𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁_𝐺𝑅𝑂𝑈𝑃 , the
maximum number of collisions per group, for the first and the sec-
ond iterations, respectively. In the first step, the entries that collided
in the first iteration are used as additional packing candidates for
the second iteration. Even after two iterations, there could still be
residual candidate entries. The second step employs conventional
collision-free packing to pack these entries. Since the total number
of residual entries from the first step is small, they can be packed
into a limited number of groups. Fig. 3b shows a simplified illustra-
tion of the relaxed-collision method iterated in step 1. The original
matrix cannot be packed under the collision-free constraint. As a
result of the relaxed constraint, 𝐶0,𝐶1, 𝐶2,𝐶4 and 𝐶3,𝐶5 can be
first packed into three intermediate groups𝑀0, 𝑀1, 𝑀2 and three
collided columns 𝑅0, 𝑅1, 𝑅2. These groups can then be packed into
𝐺0,𝐺1,𝐺2. Fig. 3c shows that using collision-aware packing on
top of partition-wise packing achieves 1.86× higher packing effi-
ciency than solely adopting partition-wise packing for matrices
with moderate (0.05) to high (0.45) densities.

To support collision-aware packing, the SpMV vector is input
so that one input element may be streamed into multiple rows of
the array (similar to multi-casting), because different parts of the
column could be packed together into different groups.

2

4

3

3

5

4

5 6

...

TPU

128
cycles

...
B15

(a) (b)

...
B3

...
B2

...
B1

...
B0

...
B4 ...

B7

...

...

...
B1

B0

129
cycles

STPU

Figure 5: (a) SpMV on STPU with a packed matrix. STPU ac-
commodates for maximum overlap of input vector groups.
(b) SpMV input dataflow on TPU and STPU with origi-
nal sparse matrix and its packed counterpart, assuming a
512×512 sparse matrix can be packed into 512×256. STPU
outperforms TPU due to less iterations and small per-
iteration latency overhead.

3 STPU OPERATION
Fig. 4 illustrates the basic operations of a systolic array network

performing SpMV (zero entries are directly mapped onto the ar-
ray) [18]. The input vector, x, is streamed into the network from
the top. The partial results then propagate through the network
cycle-by-cycle, starting from the top left corner and proceeding
downward and to the right in a diagonal wave as represented by
the different colors. Unlike the one-to-one mapping between vector
elements to PE columns employed in the TPU, in STPU, the input
vector elements need to be grouped and streamed into their cor-
responding PE column as the sparse matrix is in a packed format.
There are several challenges to designing an interface that delivers
a group of input elements to each array column.

The work described in KMZ used parallel bit-serial buses to
stream the input groups, targeting matrices with densities between
12.6% and 33.3%. While their approach achieved higher energy-
efficiency over SC-DCNN [28] with minimal hardware overhead, it
does not scale for large, highly sparse matrices, even with bit-serial
buses. For instance, using a simple greedy bin-packing algorithm
on a 10,000×10,000 sparse matrix with 0.08% density results in
a packed matrix of 28 multi-column groups, each consisting of
357 columns on an average. This will require the system to not
only have hundreds of buses (eight maximum in Kung’s approach)
going through each column of the systolic array, but also a large
MUX in each PE to select the matching input element for the MAC
operation. In addition, any multi-column group with total number
of columns less than the equipped buses will suffer under-utilization
of resources.

To solve this scalability issue, we employ sequential streaming of
the input vector elements to PE columns instead of parallel stream-
ing. The sequential streaming eliminates the overhead incurred
by parallel buses and large MUXes to select the inputs. Fig. 5a il-
lustrates the operation of STPU executing sparse matrix-vector
multiplication on a compact matrix, which eliminates the zeros

Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices ICS ’20, June 29-July 2, 2020, Barcelona, Spain

from the example in Fig. 4. Fig. 5b shows an example input for the
TPU and STPU performing SpMV with a 512×512 sparse matrix.
Without loss of generality, we assume the sparse matrix is packed
into a 512×256 compacted matrix. On a 128×128 TPU, performing
SpMV with the original matrix takes 16 iterations, each of which
has a 128-cycle latency. As shown, STPU outperforms the TPU in
terms of latency (since the matrix is packed) by performing SpMV
in fewer iterations (8 in this example) while incurring minimal
overhead from overlapping–see Fig. 5b.

We show three key differences between the operation of STPU
and the TPU-like systolic array: staggered group-wise input loading,
input and partial-sum forwarding, and data-driven MAC computing.
In the TPU, the input elements are staggered to form a diagonal
flow into the systolic array, whereas in STPU, the input elements
are grouped due to matrix packing so that group-wise input stag-
gering is performed. Then the input elements from a group are
sequentially forwarded from the north edge to the south edge cycle-
by-cycle, and each PE captures a copy of the input element which
matches the column index of the stored matrix entry. Unlike the
TPU PE, which performs MAC operation upon the arrival of an
input element, STPU PE performs MAC operations only after 1)
obtaining a matching element (which is guaranteed when all the
elements from a group passed through it) and 2) its neighboring/left
PEs have already performed a MAC and produced a partial-sum.
To meet these requirements, the STPU PE performs the MAC after
it has seen all the input elements of a group. The input staggering
ensures that the MAC operation in a PE always happens later than
its left neighbor PE. By doing this, the partial-sum can be correctly
accumulated from the west edge to the east edge. The detailed
design of the STPU PE is presented in Section 3.2.

3.1 SpMV with Large Matrices on STPU
In this section we examine the case of packed matrices that

are much larger than the systolic array. A common solution is
to employ blocking algorithms on the packed matrices [19, 21].
Blocking algorithms partition large matrices into multiple sub-
matrices of size 𝑆𝐴𝐻 × 𝑆𝐴𝑊 , where 𝑆𝐴𝐻 and 𝑆𝐴𝑊 are the height
and width of the systolic array. For instance, a randomly generated
sparse matrix𝑊 of size 1,000×1,000 and density of 0.08 is packed
into a denser matrix𝑊𝑝𝑎𝑐𝑘 of size 1,000×221 with a density of 0.34.
In this example, both the number of rows and columns/groups of
the matrix𝑊𝑝𝑎𝑐𝑘 are larger than the dimensions of the underlying
128×128 systolic array. Therefore, the matrix𝑊𝑝𝑎𝑐𝑘 must be divided
into 16 blocks of size 128×128.

Before diving into the mapping strategy, we first detail the pro-
cess of loading matrix blocks into the systolic array to expose the
timing constraint. In a conventional blocked matrix vector multi-
plication as shown in Fig. 5, if matrix block i is already loaded in
the array, the elements of the vector are input into the array from
cycle 0 to cycle 𝑆𝐴𝐻 − 1. Meanwhile, each row of block i+1 is loaded
one after another from the left edge of the systolic array. For block
i+1, the vector can be input starting from cycle 𝑆𝐴𝐻 − 1, the time
when the first row of block i+1 is fully loaded and propagated to
the destination. In this case, the scheduling of input elements in
both TPU and STPU is straightforward, as shown in Fig. 6a and c.

(b) TPU
w/ DBuff

(c) STPU
w/o DBuff

(d) STPU
w/ DBuff

...

(a) TPU
w/o DBuff

...

Figure 6: Input dataflow for TPU and STPU with and with-
out double buffering. In (d), if 𝐼𝐺0 for 𝐵𝑖+1 is scheduled as
the grey box, the previous results will be overwritten before
being used by the rightward PEs in the systolic array.

To accelerate matrix computation, TPU employs double buffer-
ing. We also employ this in STPU. With double buffering, a PE can
hold two entries, one from each of two blocks. While the array is
performing matrix-vector multiplication for a block, the other block
is being loaded without any interference. Since double buffering
allows two matrix entries to reside in a PE, it can seamlessly switch
from one block to another block for computation. Loading future
blocks (e.g. block i+1) does not block the execution of an existing
block (e.g. block i). Double buffering improves the throughput by
loading and computing simultaneously. For TPUwith double buffer-
ing, two diagonal streams of input elements comes with a one cycle
gap, and the next two streams are scheduled 𝑆𝐴𝐻 cycles later. This
then repeats, as shown in Fig. 6b.

For the mapping of packed sparse matrices on STPU with double
buffering, the input vector elements need to be carefully coordinated
to ensure correctness and maximized performance. Unlike TPU, the
matrix packing algorithm can lead to an imbalanced distribution of
packed columns into the groups. Without proper input scheduling,
a PE may not be able to fetch the correct partial-sum from its left
PE, because the partial-sum may be overwritten.

When mapping a large packed sparse matrix onto a double-
buffered STPU, a set of rules are enforced on the input vectors.
In particular, the elements of the vector for block 𝐵𝑖+1 cannot be
input into the corresponding column of the systolic array until
the following conditions are met, as shown in Fig. 6(d): 1) to avoid
datapath conflicts, an input group 𝐼𝐺𝑛 for block 𝐵𝑖+1 has to follow
the previous group 𝐼𝐺𝑛 for block 𝐵𝑖 ; 2) to maintain correctness,
the last element of 𝐼𝐺𝑛 for block 𝐵𝑖+1 should be input after the
last element of 𝐼𝐺𝑛+1 for block 𝐵𝑖 streams into the neighboring PE
on the right. Fig. 6(d) shows the constraints on the input vectors
(formed by input element groups 𝐼𝐺0, 𝐼𝐺1, 𝐼𝐺2, 𝐼𝐺3 from left to
right) into STPU with a double buffer that holds both block 𝐵𝑖 and
block 𝑖 + 1. First, streaming element group 𝐼𝐺𝑛 for block 𝑖 + 1 must
wait until 𝐼𝐺𝑛 for block 𝐵𝑖 is totally input, else there would be
datapath conflicts. Second, as indicated by the vertical dashed line
in Fig. 6d, streaming 𝐼𝐺0 for block 𝐵𝑖+1 needs to wait until 𝐼𝐺1
for block 𝐵𝑖 is fully streamed, else PEs in 𝐶𝑜𝑙1 processing block
𝐵𝑖 would accumulate the modified partial sum from PEs in 𝐶𝑜𝑙0
processing block 𝑖 + 1. Note that the timing for streaming in the
elements of input vector is determined offline by the compiler.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

Widx

Wval
End

Value

Aout

A
in

XIdxXVal XEnd

Aout_en

(a) Index Mismatch - Hold

=

0

1

Widx

Wval
End

Value

Aout

A
in

XIdxXVal XEnd

Aout_en

=

0

1

(b) Index Matching - Latch (c) Index End Reached - Accumulate (d) Val = 0 - Bypass

Widx

Wval
End

Value

Aout

A
in

XIdxXVal XEnd

Aout_en

=

0

1

Widx

Wval
End

Value

Aout

A
in

XIdxXVal XEnd

Aout_en

=

0

1

Register Compute Unit MUXLow Signal High Signal Data Signal Don't care Signal

MAC MAC MAC MAC

Figure 7: Microarchitecture and dataflow within a PE in different modes of operation. (a) Hold: The PE holds the accumu-
lated result when the index mismatches. (b) Latch: The PE latches the input vector element when the input index matches (c)
Accumulate: When the end of a vector group arrives, the PE calculates the MAC result and updates the Accu register of the
rightward PE. (d) Bypass: If the matrix value held in the PE is 0, the data coming from leftward is bypassed rightward.

3.2 STPU Architecture
STPU comprises of a 128×128 systolic array attached to a multi-

module high-bandwidth memory (HBM) subsystem with 300 GB/s
bandwidth per HBM module, which feeds the matrix and vector
inputs into STPU. Although TPU v1 uses an off-chip DDR3 for this
purpose [18], TPU v2-3 use 8 GBs of HBM per systolic array pod [5].
The increased bandwidth is utilized in STPU to load the indices of
the matrix entries as well as to support float32 and int8 values. Each
node of the systolic array is a Processing Element (PE) and each
matrix entry loaded into the systolic array is held by the PE in its
internal registers. PEs in both STPU and TPU have double buffers
to store the values and indices of the matrix entries for two matrix
blocks. The following subsections presents the architecture and
operation modes of the STPU PE as well as the memory interface
used in STPU.

3.2.1 Processing Element Architecture. Fig. 7 shows the architecture
of a PE in the systolic array of STPU. The PE is an energy-efficient
hardware block designed around a floating-point MAC unit. In this
work, we consider two data formats for the input data values — 32-
bit floating point (float32) and 8-bit signed integer (int8). The sparse
matrix column-index is represented as a 16-bit unsigned integer.
The PE block consists of registers that hold the matrix index (𝑊𝑖𝑑𝑥)
and value (𝑊𝑣𝑎𝑙), and a 16-bit comparator that compares the input
vector element’s index (𝑋𝑖𝑑𝑥) with the matrix index that it holds.
There is also a comparator that checks if the held matrix value,𝑊𝑣𝑎𝑙 ,
is zero. A register (𝐴𝑖𝑛) holds the accumulated result coming from
the left stream. At the beginning of computation, the PE receives
its assigned matrix {value, index} entry from the left stream and
holds it in its registers. For clarity, we omit the double buffering
logic and connections for matrix loading in the figure.

The elements of the input vector are streamed from the top
edge of the array. The PE also receives an accumulated value (𝐴𝑖𝑛)
from the left neighboring PE. To shorten the critical path of the
matrix computation, which depends highly on the delay between
streaming in the first and last element groups, we perform a delayed
accumulation. This feature allows the input element groups to
be streamed sequentially into the systolic array with overlaps, as
shown in Fig. 5a. The key is that instead of performing the MAC

Table 1: PE modes for different control signals.

𝑊𝑣𝑎𝑙 == 0 𝑋𝐸𝑛𝑑 𝑊𝑖𝑑𝑥 == 𝑋𝑖𝑑𝑥 Mode
0 0 0 Hold
0 0 1 Latch
0 1 × Accumulate
1 × × Bypass

*×: Don’t care

and sending the result downstream as soon as a vector element
with a matching index arrives, the PE latches-in the element value
upon an index match. The PE does not compute the MAC until
the last element in the vector group is received, in order to ensure
functional correctness. As shown in Fig. 7, the PE requires two
additional registers to support this optimization, one for holding
the vector element (𝑉𝑎𝑙𝑢𝑒), and the other, 𝐸𝑛𝑑 , for holding a 1-bit
signal indicating the end of a vector group to ensure correct timing
of operations. While this feature of the PE delays the computation
in a few PEs, it allows faster streaming of the vector groups, thus
significantly reducing the total latency of the computation.

3.2.2 Modes of Operation. Based on the input element’s index,
value of the matrix entry stored in the PE and the end signal of an
element group, the PE can be operating in one of the four modes:
hold, latch, accumulate or bypass, as illustrated in Fig. 7 and Tab. 1.
The input vector elements, i.e. 𝑋𝑣𝑎𝑙 , 𝑋𝑖𝑑𝑥 , and 𝑋𝐸𝑛𝑑 , are always
passed to the downward PE regardless of the mode of the PE.

Hold: The PE selects the matching vector element from a group
of streaming input vector elements. If the input index 𝑋𝑖𝑑𝑥 does
not match𝑊𝑖𝑑𝑥 and𝑊𝑣𝑎𝑙 is non-zero, the PE retains the value of
𝐴𝑖𝑛 .

Latch: When the PE encounters an element that matches the
index it held, i.e. when the input index 𝑋𝑖𝑑𝑥 matches𝑊𝑖𝑑𝑥 , and
𝑊𝑣𝑎𝑙 is non-zero, the input value 𝑋𝑣𝑎𝑙 is copied and stored until
the end signal arrives.

Accumulate: The PE starts performing MAC operations after
all input elements are streamed through it. When a delayed end
signal 𝑋𝐸𝑛𝑑 corresponding to the end of the input vector group
arrives, the stored value𝑋𝑣𝑎𝑙 is multiplied with𝑊𝑣𝑎𝑙 , summed with
𝐴𝑖𝑛 and stores the partial-sum into 𝐴𝑖𝑛 of the rightward PE.

Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 2: PE evaluation of the double-buffered (DBuff) TPU
and STPU, and single-buffered (SBuff) KMZ.

Mode Float32
Power (mW)

Float Area
(`𝑚2)

Int8
Power (mW)

Int Area
(`𝑚2)

ACCU 4.31 (198.6%) 6726.6
(112.93%)

0.51 (269.1%) 650.2
(211.8%)STPU HOLD/

LATCH 1.23 (56.7%) 0.48 (251.8%)

(DBuff) BYPASS 1.24 (57.1%) 0.48 (250.8%)
IDLE 0.05 <0.01

KMZ [20] ACCU N/A N/A 0.34 (179.6%) 506.5
(165.0%)(SBuff) IDLE N/A <0.01

TPU [18] ACCU 2.17 (100%) 5956.4
(100%)

0.19 (100%) 306.9
(100%)(DBuff) IDLE 0.05 <0.01

Bypass: Generally, a sparse matrix can not be packed into a
completely dense matrix. Thus, the compressed matrix is still sparse
and has zero values. To conserve power consumed by a PE in this
scenario (𝑊𝑣𝑎𝑙 is zero), we bypass 𝐴𝑖𝑛 from a PE into the 𝐴𝑖𝑛 of its
right neighbor, while powering off all the compute elements.

3.2.3 STPU Memory Interface. Though the focus of the paper is
the systolic array architecture and dataflow, in this subsection we
present a memory interface solution to feed the input vector ele-
ments to STPU.

On-chip memory, i.e. a multi-bank scratchpad is used to store the
input vector and allows parallel access to the vector elements so that
data streaming could match the speed of processing. The scratchpad
stores tuples of (column index, value) corresponding to each input
element. To distribute the elements from the on-chip memory, a
swizzle-switch network-based crossbar (XBar) is employed which
supports point-to-point and multi-cast communication [30]. We
augment the crossbar design with a Crosspoint Control Unit (XCU)
that enables reconfiguration by programming the crosspoints. The
XCU also stores the reconfiguration information describing the
XBar connections between SRAM banks and FIFOs which stores
the grouped vector elements. Each FIFO pops the elements in a
staggering manner as described in Section III. FIFOs are double-
buffered to hide data-fetch latency so that one set of FIFOs can be
updated by incoming vector elements while the second set of FIFOs
are drained out by the STPU array.

Discussions.Adopting XBars for data shuffling introduces extra
area overhead. In the proposed STPU, which has a 128×128 sized
systolic array, a 128×128 crossbar with a bit-width of 49 (16 column
index bits, 32 data bits width and 1 bit for the end signal) is used
to feed the FIFOs. Our conservative estimate of the crossbar area
based on [30] is 0.6724𝑚𝑚2, which is a negligible overhead of only
0.201% over the TPU chip area. Incorporating on-chip 128 FIFOs
with 128 depth consumes just 128 kB, which is far less than the
25 MB buffer space used in the TPU.

4 METHODOLOGY
Simulator and Physical Design. We compared our proposed

architecture, STPU, with Google’s TPU and KMZ. For fairness, we
assume a 128×128 PEs systolic array across all designs. We imple-
mented a custom cycle-accurate high-level language simulator for
the three designs, aimed to model the RTL behavior of synchronous
circuits. Each STPU PE cell implements hold, bypass, accumulate
and idle states.

In order to accurately measure both area and power, we modeled
the PE designs in the proposed STPU as well as the baseline TPU
and KMZ using System Verilog. For a thorough comparison of
STPU and TPU, we implemented PEs of two arithmetic precision,
int8 and float32 for both the proposed STPU and the baseline TPU.
For the KMZ design, we only implement int8 PEs, because their
bit-serial design does not support floating point arithmetic. We
synthesized each design using the Synopsys Design Compiler with
a 28 nm CMOS standard cell library and a target clock frequency
of 700 MHz.

The power and area estimates and the relative area/power costs
of the STPU and KMZ PE to the TPU PE are listed in Tab. 2. The
overhead of 2.11× area and 2.55× average power of STPU compared
to the TPU in the int8-format becomes much smaller in the float32
counterpart (1.13× area and 1.04× average power increase). The
overhead of int8-format is a result of the input/matrix index regis-
ters being comparable to the int8 multipliers. In the float32-format
implementation, the energy/area cost of the float32multiplier dom-
inates, hence the additional registers and logic only introduced
a limited overhead. In Section 5, we show how this difference af-
fects the energy consumption of STPU running SpMV. Note that
in the KMZ design, the PE has a smaller area compared with STPU
because it only implements single-buffering.

Datasets.We used two datasets to evaluate the proposed hard-
ware/software co-design scheme. The first set comprises 15 syn-
thetic sparse matrices that each have a uniformly random distri-
bution of non-zeros. The sizes of the matrices range from 500 to
10,000, while the density is chosen between 0.001 and 0.3. The
second set is a collection of 13 real-world sparse matrices from
the SuiteSparse collection [4], including M0: bwm200, M1: Califor-
nia, M2: circuit204, M3: fpga_dcop_26, M4: freeFlyingRobot_1, M5:
grid2, M6: hydr1c_A_01, M7: laser, M8: piston, M9: poisson2D, M10:
problem1, M11: spaceStation_4, M12: young3c.

5 EVALUATION
We evaluate the efficiency of both our packing scheme and the

STPU design. For the offline packing algorithm, the packing effi-
ciencies of the two different strategies are compared with KMZ [20].
We further compare the energy and performance over the TPU and
KMZ designs executing SpMV with a random dense vector.

For STPU, we evaluate two packing strategies, STPU-C0 and
STPU-C1, on the two sets of sparsematrices. Our proposed partition-
wise packing scheme is used in both strategies for its significant
reduction in collision probability and improved number of non-zero
(NNZ) element density. The difference between the two schemes
is that STPU-C0 maintains a mandatory collision-free constraint
while STPU-C1 relaxes the constraint by using collision-aware
packing (detailed in Section 2).

5.1 Packing Algorithm Efficiency
We define packing efficiency as 𝐷𝑚/𝐷𝑝 . The density of an un-

packed matrix 𝐷𝑚 is calculated as the NNZs divided by the size of
the matrix, i.e. 𝑁𝑁𝑍𝑠

𝑚𝑎𝑡𝑟𝑖𝑥_ℎ×𝑚𝑎𝑡𝑟𝑖𝑥_𝑤 . Since we adopt partition-wise
packing in both cases for the packed matrix, the density 𝐷𝑝 is
computed as

∑
𝑁𝑁𝑍𝑖∑ (𝑏𝑙𝑜𝑐𝑘_𝑤𝑖×𝑏𝑙𝑜𝑐𝑘_ℎ) , where 𝑏𝑙𝑜𝑐𝑘_ℎ is the height of

partition for packing (128 in this paper to match the systolic array

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

(1
00

,0
.0

01
)

(1
00

,0
.0

1)

(5
00

,.0
01

)

(5
00

,.0
05

)

(5
00

,.0
1)

(1
00

0,
.0

01
)

(1
00

0,
.0

05
)

(1
00

0,
.0

1)

(5
00

0,
.0

01
)

(5
00

0,
0.

00
5)

(5
00

0,
.0

1)

(1
00

00
,.0

01

(1
00

00
,0

.0
05

)

(1
00

00
,.0

1)
0

100

200

300

400

500

600

D
e

n
s
it
y
 i
m

p
ro

v
e

m
e

n
t

(X
) STPU-C0

STPU-C1

KMZ

(a)

(5
00

,.0
5)

(5
00

,.1
)

(5
00

,.2
)

(5
00

,.3
)

(1
00

0,
.0

5)

(1
00

0,
.1

)

(1
00

0,
.2

)

(1
00

0,
.3

)

(5
00

0,
.0

5)

(5
00

0,
.1

)

(5
00

0,
.2

)

(5
00

0,
.3

)

(1
00

00
,.0

5)

(1
00

00
,.1

(1
00

00
,.2

)

(1
00

00
,.3

)
0

5

10

15

20

D
e

n
s
it
y
 i
m

p
ro

v
e

m
e

n
t

(X
)

STPU-C0

STPU-C1

KMZ

(b)
Figure 8: Density improvement of sparse matrices using
STPU-C0, STPU-C1 and KMZ packing schemes on (a) ultra
sparse matrices (density <=0.01) and (b) moderately sparse
matrices (density >=0.05).

dimension), 𝑖 is the partition ID for the packing algorithm, 𝑁𝑁𝑍𝑖
is NNZs in partition 𝑖 and 𝑏𝑙𝑜𝑐𝑘_𝑤𝑖 is the width (the number of
multi-column groups) of the 𝑖th partition after packing.

Fig. 8 shows the packing efficiency of the proposed STPU pack-
ing strategies and KMZ across a set of uniform-random sparse
matrices. Fig. 8a and Fig. 8b show the resulting packing efficiency
for ultra sparse matrices (i.e. with density ≤0.01) and moderately
sparse matrices (i.e. with density ≥0.05) for both STPU and KMZ.
With STPU, for the ultra sparse matrices, STPU-C0 and STPU-C1
respectively achieve 144.0× and 143.4× packing efficiency. For the
moderately sparse matrices, STPU-C0 and STPU-C1 achieve 4.48×
and 6.92× better density, respectively. For the most sparse case (i.e.
dimension of 10,000 and density of 0.001), the packing efficiency is
as large as 520.2× with the STPU-C0 scheme.

STPU-C0 performs slightly better than STPU-C1 while packing
ultra sparse matrices, as collisions are rarely seen in these matrices,
STPU-C0 can already reach a high density level without allow-
ing collision, while STPU-C1 unnecessarily relaxes the constraint
and creates redundant groups. On the other hand, when handling

0 0.1 0.2 0.3 0.4

Matrix density

0

1

2

3

4

5

6

E
n
e
rg

y
 (

J
)

10
-7

STPU-C1

STPU-C0

TPU

(a)

0 0.1 0.2 0.3 0.4

Matrix density

0

1

2

3

4

5

6

E
n
e
rg

y
 (

J
)

10
-6

STPU-C1

STPU-C0

TPU

0 0.01 0.02 0.03 0.04 0.05
2

4

6

8
10-7

(b)
Figure 9: Energy evaluation of STPU and TPU running
SpMV with fixed size sparse matrices with different densi-
ties. (a) int8 implementation, (b) float32 implementation.

moderately sparse matrices, STPU-C1 outperforms STPU-C0. The
reason is that even if collisions exist, STPU-C1 enables the pack-
ing of columns with limited number of collisions that cannot be
packed by STPU-C0. This difference demonstrates that STPU-C1 is
more effective for less sparse matrices. For the packing algorithm
proposed in KMZ [20], as shown in the figure for the ultra sparse
matrices, on average 8.0× packing efficiency is seen, whereas for the
moderately sparse matrices 1.07× improvement is achieved. These
results illustrate that our proposed packing algorithm outperforms
the prior work. Even though KMZ’s method achieves the same
packing efficiency as us for ultra sparse matrix of small sizes (e.g.
with a dimension of 100 and density of 0.001), with increasing size
or density of the sparse matrix, the packing efficiency decreases
significantly because the packing method in KMZ cannot handle
the increased number of collisions efficiently.

5.2 Performance and Energy for SpMV
Scalability Analysis. In the first experiment, we fix the size of

the sparse matrices (i.e. 1,000×1,000) and vary the density, showing
energy comparisons between STPU and the TPU running SpMV
on sparse matrices of increasing density (Fig. 9). The goal of this

Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 3: Performance scalingwith fixed number of nonzeros:
latency of SpMV execution on STPU compared to the TPU.
The dimension of the sparse matrices range from 1000 to
10,000 each having 200,000 non-zero elements.

Elapsed Time (# cycles)Matrix
Size

Density
(r) STPU-C0 STPU-C1 TPU KMZ

1,000 0.2000 2,887 1,481 4,129 18,240
2,000 0.0500 1,833 1,798 16,129 72,960
3,000 0.0220 2,088 2,510 36,129 164,160
4,000 0.0125 2,965 3,552 64,129 291,840
5,000 0.0080 4,071 4,689 100,129 456,000

experiment is to explore the relationship between the density of the
sparse matrix and energy consumption. We also show the crossover
point of performance between STPU and the TPU. Fig. 9a shows
the results for the int8 implementation.

As expected, the energy consumption increases with matrix
density. Up to a certain density, the energy consumption remains
constant. This is because as the density grows, the packing algo-
rithm encounters higher probability of collision and eventually
fails to pack any columns (e.g. densities >0.3 in STPU-C0). We
also notice an interesting trade-off — for lower densities, STPU-
C0 outperforms STPU-C1, and vice versa for high densities. This
is because in the low density range, though both STPU-C0 and
STPU-C1 achieve similar density improvement and elapsed latency,
STPU-C1 relaxes the collision-free constraint, allowing entries of
a column to be packed into different multi-column groups. As a
result, during the execution of STPU-C1 an input vector element
may need to be streamed to multiple columns of the systolic ar-
ray, leading to an increased number of index comparisons and thus
higher energy consumption. Taking a sparse matrix with 0.1 density
as an example, the matching energy in STPU-C1 is 5.25× greater
than STPU-C0. At the high density end, STPU-C1 achieves a higher
packing efficiency than STPU-C0 and results in a shorter elapsed la-
tency (2.00× improvement for a density of 0.3) and reduced leakage
energy (2.18×).

When comparing with the baseline TPU, STPU handles low den-
sity matrices efficiently by consuming lower energy than the TPU.
Beyond a certain point (0.12 density for the int8 implementation),
the TPU exhibits better energy consumption, because STPU has
additional energy overhead, which is comparable to the TPU PE
energy in the int8 version. When the density increases to a certain
level, the effectiveness of matrix packing diminishes. Fig. 9b shows
the results for the float32 implementations. Since the overhead of a
STPU PE with float32 is relatively small compared to the TPU PE,
the crossover point is shifted towards the high density end (0.20
for STPU-C0 and 0.44 for STPU-C1). These results demonstrate the
potential of adopting STPU for applications with high-precision
requirements. In this experiment, we also estimate the energy of
the KMZ int8 design. The KMZ design consumes 1.70 × 10−5 J of
energy, which is 4.35× larger than that for the int8 TPU design. The
reason for the low efficiency is two-fold. First, their packing algo-
rithm cannot pack any sparse columns due to collisions. Second,
the overhead of bit-serial design incurs longer latency, leading to
large leakage energy.

For the second experiment, we fix the total NNZs (i.e. 200,000)
and report the performance comparison between STPU and the
TPU running SpMV on sparse matrices of different sizes, as shown
in Tab. 3. This experiment explores the scalability of STPU with
increasing problem size while keeping the total number of non-zero
MAC operations constant. As observed from Tab. 3, the latency
increases linearly with increasingmatrix size. This is because the op-
portunity for packing columns increases linearly with larger matrix
dimension (sparser matrix) while the total size of matrix increases
quadratically. In contrast, the TPU latency increases quadratically
since the entire sparse matrix (with zeros) is mapped onto the sys-
tolic array. For KMZ’s design, the latency is much larger than the
TPU. This is also because their packing algorithm cannot pack as
many columns, and thus zero entries are directly mapped on the
systolic array. For the same reason, the latency induced by bit-serial
operation is exacerbated. To conclude, these results indicate STPU
has better scalability when handling very sparse matrices. Note that
for STPU-C0, the latency initially reduces with increased matrix
size, e.g., 2,887 cycles for a matrix with size 1,000 and density 0.20, to
1,883 cycles for one with size 2,000 and density 0.05. This is because
the packing efficiency improves from 1.51× to 11.95× as a larger
sparsity gives STPU-C0 more opportunities to pack columns.

Performance and Energy Analysis. For the evaluation of
SpMV on STPU, we report the performance improvement and en-
ergy reduction over TPU on a broad set of sparse matrices. Fig. 10a
and 10b show the results for randomly generated sparse matri-
ces. In terms of performance, STPU-C0 outperforms STPU-C1 for
very sparse matrices (density ≤ 0.01) since STPU-C0 achieves 1.48×
higher speedup than STPU-C1. While for moderately sparse matri-
ces (density ≥ 0.1), STPU-C1 achieves 1.24× higher speedup than
STPU-C0. For energy consumption of int8 implementations, STPU-
C1 and STPU-C0 achieve on average 1.66× and 1.46× reduction,
respectively. When targeting a high-precision float32 implemen-
tation, since the overhead of STPU is relatively small, STPU-C0
and STPU-C1 reduce energy consumption by 8.83× and 8.20× on
average, respectively, over the float32 TPU implementation. Fig. 10c
and 10d show the results for the SuiteSparse matrices. STPU-C0 and
STPU-C1 achieve 24.14× and 21.50× speedup over the TPU, respec-
tively. In terms of energy consumption of int8 implementations,
STPU-C0 and STPU-C1 achieve 7.83× and 6.60×, on average reduc-
tions. For the float32 counterparts, STPU-C0 and STPU-C1 reduce
energy consumption by 33.58× and 28.54× on average, respectively.

In addition, we compare STPU performance against a CPU (4.00GHz
Intel Core i7-6700K Processor with MKL) and a GPU (GeForce RTX
2080 @ 1515 MHz with cuSPARSE). On average, STPU achieves 5.5x
higher performance over the GPU and 436.0x higher performance
over the CPU.

Bandwidth Analysis. As opposed to the TPU, the STPU PE re-
quires the knowledge of the column index to perform index match-
ing, thus the indices have to be streamed in the STPU array along
with the values, incurring higher bandwidth requirement. Hence,
we conduct design space exploration with the random-generated
matrices set and compare the bandwidth requirement of SpMV
between TPU and STPU. The results are shown in Fig. 11. The
float32-version TPU is simulated for a direct comparison while
the bfloat16-version halves the bandwidth requirement. We also

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

500 1000 5000 10000
(.01 .1 .3) (.001 .01 .1 .3) (.001 .01 .1 .3) (.001 .01 .1 .3)

10-1

100

101

102

S
p

e
e

d
u

p
 o

v
e

r
th

e
 T

P
U

S-C0

S-C1

(a)
500 1000 5000 10000

(.01 .1 .3) (.001 .01 .1 .3) (.001 .01 .1 .3) (.001 .01 .1 .3)
0.1

 1

 10

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

S-C0-int8

S-C1-int8

S-C0-float32

S-C1-float32

(b)

500 1000 5000 10000
(.01 .1 .3) (.001.01 .1 .3) (.001.01 .1 .3) (.001.01 .1 .3)

10-1

100

101

102

S
p

e
e

d
u

p
 o

v
e

r
th

e
 T

P
U

S-C0

S-C1

(c)

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

100

102

E
n

e
rg

y
 r

e
d

u
c
ti
o

n

S-C0-int8

S-C1-int8

S-C0-float32

S-C1-float32

(d)
Figure 10: Evaluation of SpMV on synthetic uniform-random sparse matrices (a, b) and SuiteSparse matrices (c, d). (a) and
(c) report the speedup (x-axis has matrix densities in parentheses and dimensions below them). (b) and (d) report the energy
reduction for both the int8 and float32 implementations. S-C0(1) is a shorthand for the STPU-C0(1) scheme.

estimate the bandwidth of STPU-C1 in both float32- and bfloat16-
versions. STPU-C1 exhibits higher packing efficiency than STPU-C0,
which relieves the bandwidth requirement. As shown, TPU-float32
achieves similar bandwidth, i.e. around 633.51 GB/s across different
matrices. In contrast, STPU-C1 achieves an average 486.3 GB/s and
327.55 GB/s in the float32 and bfloat16 implementations, respec-
tively. Using the bfloat16 representation reduces the amount of
matrix storage by half, as compared with float32, thus leading to
a reduced overall bandwidth. For matrices with the same dimen-
sions, larger density leads to higher bandwidth requirement due
to the increased difficulty of column packing. We also notice that
in some cases the bandwidth requirement exceeds 600 GB/s which
is much higher than TPU. A possible solution to address this is
using relative column indices of a packing group for the matrix
to reduce the bit length of the indexes, rather than the absolute
index (16 bits in this paper). Another orthogonal solution is lever-
aging multiple HBM modules in the memory system like TPUv3
and commodity FPGAs [5, 22]. Besides, HBM3 is expected to be
able to provide TB/s-level bandwidth which can easily satisfy the
bandwidth requirement of STPU.

6 RELATEDWORK
Sparse DNNs and Matrix Acceleration. There has been sig-

nificant interest in accelerating machine learning workloads, espe-
cially DNNs. One of the main approaches to improve DNN perfor-
mance is to exploit the high degree of redundancy in the weight
matrices in DNNs [6]. Deep Compression [14] and Dynamic Net-
work Surgery [12] compress a DNN to a fraction of its original size
through efficient pruning techniques. These pruning techniques
have led to an increased interest in sparse matrix algorithms, as

500 1000 5000 10000
(.01 .1 .3)(.001.01 .1 .3)(.001.01 .1 .3)(.001.01 .1 .3)AVG

0

200

400

600

800

1000

B
a
n
d
w

id
th

 (
G

B
/s

)

TPU-float32

STPU-float32

STPU-bfloat16

Figure 11: Bandwidth of TPU and STPU performing SpMV
on a set of random-generated matrices.

the dense weight matrices are pruned to sparse matrices. While
conventional architectures, such as CPUs and GPUs, achieve high
performance on dense DNNs, they struggle to achieve a similar
level of performance on sparse matrices, due to irregular memory
accesses that are inherent in sparse data structures. Thus, there
has been growing interest in accelerating sparse matrix operations
through custom hardware accelerators.

Early implementations of sparse matrix accelerators, such as the
DAP processor [27], focused primarily on scientific computation
workloads. These scientific and engineering applications operate
on single or double precision floating point data, which are much

Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices ICS ’20, June 29-July 2, 2020, Barcelona, Spain

wider than the formats used in DNN applications. Efficient Infer-
ence Engine (EIE) [13] is a custom hardware accelerator specific to
DNNs. EIE utilizes Deep Compression [14] to prune the network,
then uses a custom pipeline to accelerate the matrix-vector multipli-
cation. EIE operates on compressed data for both activation values
and the weights, but relies on complex central scheduling units to
coordinate the processing elements. Cambricon-X [34] is a sparse
neural network accelerator with a fat-tree interconnect to alleviate
network congestion. However, it is only concerned with compress-
ing the activation values (i.e. the vector), and does not compress
weights. OuterSPACE [23, 24, 26] is a co-designed solution that
accelerates sparse matrix multiplication using an outer product
algorithm on an architecture that reconfigures the on-chip memory.
ExTensor [17] uses hierarchical intersection detection to eliminate
unnecessary computations in sparse matrix-matrix multiplications
and tensor algebra. SparTen [10] accelerates CNNs by exploiting
both the sparsity in feature maps as well as the filter values of the
network, and utilize asynchronous compute units for computation.
Instead of designing custom accelerator hardware, STPU supports
efficient sparse matrix vector multiplication on systolic arrays with
minor modifications on TPU PEs [18].

Systolic Architecture for DNNs. Systolic arrays are simple,
energy-efficient architectures that minimize data transfer over-
heads by having each PE forward data directly to the neighboring
PE that consumes it. Systolic array based accelerators have been a
popular choice for accelerating dense matrix multiplication work-
loads in DNNs. The Tensor Processing Unit (TPU) [18], which we
use for comparison, is a systolic DNN accelerator that utilizes nar-
row, 8-bit MAC units and a custom 16-bit floating point format to
reduce power consumption with minimal loss in accuracy. SCALE-
Sim [29] is a simulation infrastructure for exploring design space of
systolic array accelerators for DNNs. However, both the TPU and
SCALE-Sim focus on dense matrix multiplication, and do not take
advantage of weight sparsity resulting from pruning techniques
that have emerged in recent years. SCNN [25] is a compressed
neural network accelerator with a 2D mesh interconnect, where
each PE propagates its data to the neighbor in a similar manner
as a systolic array. SCNN operates on sparse matrix data and uses
compressed sparse encoding of weights and inputs to operate only
on non-zero elements. Kung et al. [20] employ a packing strategy
similar to ours to accelerate DNNs, but their solution requires seri-
alized parallel buses and re-training after collision handling. STPU
proposes an efficient packing algorithm that allows collisions to
greatly increase the density of the packed matrix, which leads to
improvements in both latency and energy consumption.

7 CONCLUSION
In this paper, we proposed a co-designed framework to adapt

systolic arrays to handle sparse matrices, specifically sparse matrix
dense vector multiplication (SpMV). Instead of mapping a sparse
matrix directly onto the systolic array, we developed a novel pack-
ing algorithm to pack matrix columns to reduce the occurrence of
zeros. To make use of this column packed format, we presented the
STPU design—a 2D systolic array of simple PEs. The PEs incorpo-
rates index matching and value holding functionalities, in addition
to MAC units. These modifications support the direct processing

of sparse matrices in the packed format. The packing algorithm
effectively improves the density of the sparse matrices by 74.71× on
average across a set of random generated matrices. For SpMV, STPU
also exhibits performance improvement of 16.08× over the TPU
baselines, on average, for uniform-random matrices and matrices
from the SuiteSparse collection. In terms of energy efficiency, STPU
achieves energy savings of 4.39× for the int8 implementation and
19.79× for the float32 implementation. Our future work involves ex-
panding the STPU framework to handle SpMV with sparse vectors,
as well as sparse matrix-matrix multiplication.

ACKNOWLEDGEMENT
The material is based on research sponsored by Air Force Re-

search Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-7864. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) or the U.S. Govern-
ment.

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2016. A scalable processing-in-memory accelerator for parallel graph processing.
ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[2] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik
Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[3] Alfredo Cuzzocrea, Domenico Saccà, and Jeffrey D Ullman. 2013. Big data: a
research agenda. In Proceedings of the 17th International Database Engineering &
Applications Symposium. ACM, 198–203.

[4] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

[5] Jeff Dean. 2017. Machine learning for systems and systems for machine learning.
In Presentation at 2017 Conference on Neural Information Processing Systems.

[6] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando
de Freitas. 2013. Predicting Parameters in Deep Learning. CoRR abs/1306.0543
(2013). arXiv:1306.0543 http://arxiv.org/abs/1306.0543

[7] Iain S Duff, Albert Maurice Erisman, and John Ker Reid. 2017. Direct methods for
sparse matrices. Oxford University Press.

[8] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. 2002. An Overview of the
Sparse Basic Linear Algebra Subprograms: The New Standard from the BLAS
Technical Forum. ACM Trans. Math. Softw. 28, 2 (June 2002), 239–267. https:
//doi.org/10.1145/567806.567810

[9] Adi Fuchs and David Wentzlaff. 2019. The accelerator wall: Limits of chip spe-
cialization. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 1–14.

[10] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). ACM, New York, NY, USA,
151–165. https://doi.org/10.1145/3352460.3358291

[11] J. L. Greathouse and M. Daga. 2014. Efficient Sparse Matrix-Vector Multiplication
on GPUs Using the CSR Storage Format. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
769–780. https://doi.org/10.1109/SC.2014.68

[12] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic Network Surgery for
Efficient DNNs. CoRR abs/1608.04493 (2016). arXiv:1608.04493 http://arxiv.org/
abs/1608.04493

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. CoRR abs/1602.01528 (2016). arXiv:1602.01528 http:
//arxiv.org/abs/1602.01528

http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1306.0543
https://doi.org/10.1145/567806.567810
https://doi.org/10.1145/567806.567810
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1109/SC.2014.68
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1608.04493
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1602.01528

ICS ’20, June 29-July 2, 2020, Barcelona, Spain He, et al.

[14] Song Han, Huizi Mao, and William Dally. 2016. Deep Compression: Compressing
DeepNeural Networks with Pruning, Trained Quantization andHuffmanCoding.

[15] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[16] Xin He, Guihai Yan, Wenyan Lu, Xuan Zhang, and Ke Liu. 2019. A Quantitative
Exploration of Collaborative Pruning and Approximation Computing Towards
Energy Efficient Neural Networks. IEEE Design & Test 37, 1 (2019), 36–45.

[17] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52Nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). ACM, NewYork, NY, USA, 319–333. https://doi.org/10.1145/3352460.
3358275

[18] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/3079856.3080246

[19] Bo Kågström, Per Ling, and Charles Van Loan. 1998. GEMM-based level 3
BLAS: High-performance model implementations and performance evaluation
benchmark. ACM Transactions on Mathematical Software (TOMS) 24, 3 (1998),
268–302.

[20] H.T Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing Sparse Convo-
lutional Neural Networks for Efficient Systolic Array Implementations: Column
Combining Under Joint Optimization. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, New
York, NY, USA, 13. https://doi.org/10.1145/3297858.3304028

[21] Jiajia Li, Xingjian Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2012.
An optimized large-scale hybrid DGEMM design for CPUs and ATI GPUs. In
Proceedings of the 26th ACM international conference on Supercomputing. ACM,
377–386.

[22] Nallatech. 2018. OpenCAPI enabled FPGAs—the perfect bridge to a data
centricworld. https://openpowerfoundation.org/wp-content/uploads/2018/
10/Allan-Cantle.Nallatech-Presentation-2018-OPF-Summit_Amsterdam-
presentation.pdf. [Online].

[23] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[24] Subhankar Pal, Dong-hyeon Park, Siying Feng, Paul Gao, Jielun Tan, Austin
Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, TimothyWesley, et al. 2019.
A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator
using Memory Reconfiguration in 40 nm. In 2019 Symposium on VLSI Technology.
IEEE, C150–C151.

[25] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel S. Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks. CoRR abs/1708.04485 (2017). arXiv:1708.04485
http://arxiv.org/abs/1708.04485

[26] Dong-Hyeon Park, Subhankar Pal, Siying Feng, Paul Gao, Jielun Tan, Austin
Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, et al.
2020. A 7.3 M Output Non-Zeros/J, 11.7 M Output Non-Zeros/GB Reconfigurable
Sparse Matrix-Matrix Multiplication Accelerator. IEEE Journal of Solid-State
Circuits (2020).

[27] S. F. Reddaway. 1973. DAP&Mdash;a Distributed Array Processor. In Proceedings
of the 1st Annual Symposium on Computer Architecture (ISCA ’73). ACM, New
York, NY, USA, 61–65. https://doi.org/10.1145/800123.803971

[28] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian, and
Bo Yuan. 2017. Sc-dcnn: Highly-scalable deep convolutional neural network
using stochastic computing. ACM SIGOPS Operating Systems Review 51, 2 (2017),
405–418.

[29] Ananda Samajdar, Yuhao Zhu, Paul N.Whatmough,MatthewMattina, and Tushar
Krishna. 2018. SCALE-Sim: Systolic CNNAccelerator. CoRR abs/1811.02883 (2018).

arXiv:1811.02883 http://arxiv.org/abs/1811.02883
[30] Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel

Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das, Thomas F Wenisch,
Dennis Sylvester, et al. 2012. Swizzle-switch networks for many-core systems.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 2 (2012),
278–294.

[31] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. Graphmat: High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[32] Robert Tarjan and Andrew Yao. 1979. Storing a Sparse Table. Commun. ACM 22,
11 (1979), 606–611.

[33] Paul Teich. 2018. Tear Apart Google’s TPU 3.0 AI Coprocessor. https://www.
nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/

[34] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
2016. Cambricon-X: An accelerator for sparse neural networks. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783723

[35] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based Graph Process-
ing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 712–725.

https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3297858.3304028
https://openpowerfoundation.org/wp-content/ uploads/2018/10/Allan-Cantle.Nallatech-Presentation-2018- OPF-Summit_Amsterdam-presentation.pdf
https://openpowerfoundation.org/wp-content/ uploads/2018/10/Allan-Cantle.Nallatech-Presentation-2018- OPF-Summit_Amsterdam-presentation.pdf
https://openpowerfoundation.org/wp-content/ uploads/2018/10/Allan-Cantle.Nallatech-Presentation-2018- OPF-Summit_Amsterdam-presentation.pdf
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
https://doi.org/10.1145/800123.803971
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
https://doi.org/10.1109/MICRO.2016.7783723

	Abstract
	1 Introduction
	2 Sparse Matrix Packing
	2.1 Basic Column Packing Algorithm
	2.2 Optimizations For More Efficient Packing

	3 STPU Operation
	3.1 SpMV with Large Matrices on STPU
	3.2 STPU Architecture

	4 Methodology
	5 Evaluation
	5.1 Packing Algorithm Efficiency
	5.2 Performance and Energy for SpMV

	6 Related Work
	7 Conclusion
	References

