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ABSTRACT
Several academic EDA tools have been released; however, few are
used in real tapeouts, even by other academics. Robust open-source
tools require feedback and direction from users. To this end, Open-
ROAD employs end-users as internal design advisors who bring
with them the experience of multiple tapeouts and EDA tool flow
development. This paper discusses the OpenROAD design advisors’
ongoing work to bring OpenROAD from a collection of tools to an
end-to-end autonomous design flow. We discuss our work to fill in
the gaps for a full RTL-to-GDS design flow, assemble a full-flow test
suite reflective of real tapeouts, debug flow-level issues between
tools, and bridge the gap between OpenROAD developers and oth-
ers in the open-source community. Lastly, we discuss OpenROAD’s
long-term goal to become fully autonomous, and what that means
from a user’s perspective.
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1 INTRODUCTION
Access to high-quality electronic design automation (EDA) tools,
required engineering expertise, and lengthy project schedules have
long been a barrier to hardware startups and hobbyists. Restrictive
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licensing has also been a massive impediment to the academic
community due to virtually all licenses prohibiting sharing of scripts
or results. With this motivation in mind, The OpenROAD Project
aims to create a fully autonomous, open-source tool chain for full
“RTL-to-GDS” digital layout generation.With such a tool, numerous
issues can be addressed, including engineering resources, licensing,
collaboration, and reproducibility [7, 8, 12].

A critical aspect of creating usable open-source software is to
receive feedback and direction from users. As such, OpenROAD
employs a group of experienced digital SoC designers as internal
design advisors. Our job is to act as the first users of the OpenROAD
tools and form a quick feedback loop with developers in order to
iterate software quickly.

The original intent of the internal design advisor was to use
real-world designs for tool testing and feedback, as well as provide
human intelligence to guide tool development (similar to applica-
tion or product engineers). Over the course of the project, however,
it became apparent that key responsibilities for realization of Open-
ROAD goals [7, 8] did not fit cleanly into the project’s organization
structure. As such, the design advisor role has evolved to encom-
pass several additional tasks which can be categorized under two
responsibilities:

Flow Development. Even with well-defined OpenROAD tool
interfaces, orchestrating a full RTL-to-GDS flow is a non-trivial task.
Since creating the previous iterations of OpenROAD-flow [7, 8],
we have substantially overhauled the flow to transition from a tool
chain of stand-alone binaries to an integrated app. In addition, we
are responsible for interjecting flow-level solutions which increase
autonomy and reduce burden on developers. Such solutions act as
initial scaffolding to improve autonomy from a user’s standpoint
and allow developers to focus on critical tool features.

Test Infrastructure. The integration of OpenROAD tools into
a single app highlighted the project’s need for continuous integra-
tion (CI) infrastructure (as noted by Kahng [12]). The OpenROAD
Project operates in a delicate situation of testing with proprietary
commercial data but developing with public infrastructure (e.g.
GitHub). In addition, CI infrastructure requires maintaining good
unit and integration tests for code coverage and metric tracking. We
have set up a Jenkins CI infrastructure to balance these demands
and create a secure but productive CI flow for the tool developers.

In this paper, we discuss the background of The OpenROAD
Project (Section 2), and the main responsibilities of the internal



design advisors (Sections 3 & 4) in order to bring OpenROAD from
a collection of tools to a full RTL-to-GDS flow. Next, we discuss
OpenROAD’s long-term goals of autonomy and quality, and the
roadmap we want from a user’s perspective (Sections 5 & 6). We
conclude with our key lessons learned and goals for OpenROAD
(Section 7).

2 BACKGROUND
The OpenROAD Project was launched in June 2018 within the
DARPA IDEA program to create an open-source, fully autonomous
RTL-to-GDS flow. The RTL-to-GDS process implements a register-
transfer-level (RTL) description of a circuit into the Graphic Design
System (GDS) format, representing a mask layout which fabrication
facilities use to manufacture chips. This implementation process
is broken down into several sequential steps, generally referred
to as a design implementation flow. Flows differ among designers
for a variety of reasons, but the most basic flows include synthesis,
floorplanning, placement, clock tree synthesis (CTS), optimization,
and routing. Verification is also important to verify that the design
is manufacturable and free from critical bugs.

“OpenROAD” or “the OpenROAD app” is a collection of physical
design tools which can take a Verilog netlist and perform place-
ment and routing (PnR) to output a physical design in the Design
Exchange Format (DEF). The OpenROAD app only covers the PnR
portion of the flow (floorplanning to routing1). The other impor-
tant steps – synthesis, DEF to GDS conversion, and verification –
are performed using third-party open-source tools (Yosys [16] and
KLayout [13]). To fulfill OpenROAD’s RTL-to-GDS commitment,
“OpenROAD-flow” acts as a wrapper around these tools and forms
a full design implementation flow. These tools are all available from
github.com/The-OpenROAD-Project.

This past year, The OpenROAD Project has spent significant
effort on support for a commercial 14nm platform. With this mile-
stone coming to a close, OpenROAD is entering the second phase
of the project and ready to focus on additional directions.

3 FLOW DEVELOPMENT
3.1 Original Intent
The initial task of the internal design advisors was to test the Open-
ROAD tools with previously taped-out designs and provide rapid
feedback throughout the development process. It quickly became
apparent that a flow would be required to achieve this task; how-
ever, flow development was not clearly defined at the launch of The
OpenROAD Project.

OpenROAD started as a collection of separate tool binaries ac-
complishing various steps of a design flow. The tools varied in
maturity and some tools/steps were not initially available. In ad-
dition, the interfaces and expectations between tools were not
concretely defined. To address this, we needed a flow able to pass
designs through all available steps provided by the development
team. This included the ability to skip or work around flow steps as
necessary. Therefore, the earliest iterations of our flow leveraged
commercial tools to generate “clean” artifacts (DEFs, floorplans,
guides, etc.) needed to exercise each tool/step. The initial iteration
of the flow chained steps together using GNU Make, and this flow
has continued to evolve with the maturing tools.
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Figure 1: Evolution of OpenROAD-flow

3.2 Responsibilities
Maintenance of the OpenROAD-flow repository is now the largest
and foremost responsibility of the design advisors. While the Open-
ROAD app offers a collection of PnR tools, there remains a huge
gap between the OpenROAD app and a full RTL-to-GDS flow.
OpenROAD-flow provides wrappers around Yosys, the OpenROAD
app, and KLayout to fulfill this role. Yosys provides synthesis from
Verilog RTL to netlist, OpenROAD provides PnR from netlist to DEF,
and KLayout provides DEF to GDS conversion as well as design
rule checking (DRC) and layout-versus-schematic (LVS) checking.

Figure 1 shows the evolution of OpenROAD-flow from its initial
implementation [7, 8] to the current iteration. The largest improve-
ment to OpenROAD-flowwas the shift from a file-based interface to
a unified database interface. The alpha release of OpenROAD used
separate binaries for each tool and relied on a patchwork of configu-
ration files and command-line arguments to run each tool. Once the
tools were integrated into a unified app1, all interfaces were also
unified into a single binary with a Tcl interface. OpenROAD-flow
has expanded its support to include 14nm FinFET and the newly
open-sourced SkyWater 130nm platform. In addition, open-source
DRC and LVS are available through KLayout; however, very few
process development kits (PDKs) have KLayout rule decks available.
Community-sourced decks are available for NanGate45 and are
expected for SkyWater130, but the outlook for other commercial
PDKs remains dim.

In addition to adding more flow stages as shown in Figure 1,
another key responsibility is simplifying the user’s flow interactions.
To this end, the important data preparation step aims to minimize
the number of user adjustments needed to set up a commercial PDK,
such that it is usable by OpenROAD-flow. Optimization, while not
explicitly shown, is embedded in the placement and CTS stages.

1TritonRoute is a separate binary at time of writing, but integration is expected soon.
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Figure 2: OpenROAD-flow submodule branching methodology

3.3 Challenges
Developing and maintaining OpenROAD-flow has led to several
challenges along the way to meeting OpenROAD’s development
schedule goals. In this section, we discuss some of the most difficult
aspects we faced.

3.3.1 Tool Synchronization. One of the main challenges for flow
maintenance has been synchronization. OpenROAD-flow acts as a
wrapper on top of OpenROAD and other tools. Therefore, whenever
the underlying tools change, OpenROAD-flow must change as well.
This problem bears resemblance to software libraries and packaging.
However, OpenROAD developers frequently update the application
programming interface (API) or introduce new features, and they
look for feedback within on the order of hours or days. Therefore,
synchronization occurs at a scale that is too fine-grain to rely on
software packaging.

Our approach to this problem relies on asynchronous, regular
updates to OpenROAD-flow. The current methodology is shown
in Figure 2. OpenROAD-flow maintains a reference to a specific
OpenROAD commit (and other tools) via git submodules, which
allows OpenROAD-flow to maintain API synchronization with
OpenROAD. When updates are committed to OpenROAD, we can
asynchronously update OpenROAD-flow’s submodule reference,
perform API updates, and then merge the changes into the master
branch. This model differs from the one described by Kahng [12] in
a few regards. In particular, OpenROAD-flow separates tests into
small pipe-cleaning tests and large quality of result (QoR) tests
across separate Jenkins pipelines triggered by separate branches.
The main reason for this strategy is to reduce build server load: if a
large QoR test is triggered from every commit, the build server can
quickly become overloaded. We instead use automatically triggered
small tests for every commit to the development branch, and then
large tests only on merges to the “staging” branch. Merges to the
staging branch occur at a regular interval (i.e., nightly), and merges
to the master branch are triggered by a successful QoR test.

3.3.2 Tool Workarounds. In cases where the root issue resided be-
tween tools, the design advisors would often be able to perform
external processing as a workaround for lack of tool support. This

allowed developers to focus on more critical issues. Some previous
examples include fixing incorrect or inconsistent DEF outputs be-
tween tools, fixing technology-dependent tool issues, and adding
partial support for yet-to-be-supported file formats (e.g., intercon-
nect parasitics).

Adding workarounds remain a balancing act, however, as they
often add technical debt which burdens future development. Several
of these workarounds have enabled the development team to hit
our schedule for 14nm node support, but now underlying issues
must be thoroughly investigated to reduce technical debt.

3.3.3 Parameter Tuning. Virtually all EDA tools require human
input to identify design intent and constraints. While OpenROAD’s
long-term goal is to automate much of this process, OpenROAD
developers today need reasonably selected inputs in order to de-
bug algorithms and identify smaller-scale problems. The design
advisors have often provided the human intelligence to select and
tune design parameters, such as design area and utilization, cell
placement padding, and global routing settings. Parameter tuning
is a normal part of designing with EDA tools and is quite straight-
forward for experienced designers. The more challenging aspect of
parameter tuning is trying to identify tool pitfalls to the developers.
For example, if decreasing global placement density and reducing
global routing per-layer resource allocations do not result in re-
duced routing violations, then the issue may be that the detailed
placer is causing pin access issues for the detailed router. As design
advisors, we have to be familiar with the entire flow and process
rules in order to narrow down issues appropriately.

In addition, the challenge becomes more difficult when applying
this tuning across platforms. The design advisors are expected to
maintain good configurations for each design across all supported
nodes - from 130nm down to 14nm. The diverse routing rules, cell
libraries, metal stacks, etc. across supported nodes dictate separate
parameters across platforms, in addition to tuning designs.

3.3.4 Generic Node Enablement. Detailed routing for FinFET tech-
nology nodes is a significant challenge for academic research. A
routing tool must understand all of the hundreds of complex design



rules in order to properly route designs without design rule viola-
tions (DRVs). To the best of our knowledge, no academic detailed
router other than OpenROAD’s TritonRoute [6] supports FinFET
(sub-20nm) nodes. Even among commercial tools, few commercial
routers successfully route FinFET-node designs without DRVs.

As internal design advisors, helping TritonRoute to achieve zero
DRVs with limited time and resources was a significant challenge.
Following the “generic node enablement” methodology [12], we
made and enforced assumptions in routing rules to minimize the
required design rule support:

• Unidirectional and on-track routing.Only on-track rout-
ing in the preferred direction is allowed. Bidirectional routing
triggers complex design rules, such as spacing to convex or
concave corners and color-aware design rules for multiple
patterning technology layers.

• Minimum-width routing. Non-default routing (NDR) is
not allowed. Wide metals trigger width-aware spacing rules,
via enclosure rules and minimum numbers of vias.

• On-trackpins formacro cells.Macro cells, such as SRAMs
and other IPs, often have non-uniform pin widths and shapes.
By creating “wrapped LEF” views with on-track, minimum-
width pins, we can provide a view with simplified pin access
without violating the two previous assumptions.

• Routing-friendly P/Gdistribution.Minimum-width rout-
ing is generally not an option for the power delivery network
(PDN). In order to avoid forcing the router to consider NDRs,
OpenROAD’s PDN generator adds routing blockages and
uses on-track, minimum-width stacked vias between power
stripes. This allows the router to perform clean routing with-
out any additional rule support.

4 TEST INFRASTRUCTURE
4.1 Design Suite
4.1.1 Original Intent. A critical aspect of making OpenROAD a
usable tool is ensuring it is tested on real-world design data. The
original intent of the design advisors was to curate a suite of test
cases based on previous tapeouts of real designs. We quickly ran
into several issues that prevented us from creating meaningful test
cases for the developers.

Candidate designs that we identified for test cases proved too
complex, and they overwhelmed the early OpenROAD tool capa-
bilities. Our initial test cases had many advanced features not yet
supported by OpenROAD, such as dense floorplans, multiple power
domains, multiple clocks, etc. Additionally, some designs relied
on circuit-level techniques which were incompatible with Open-
ROAD’s all-digital design flow, or contained proprietary IP which
prevented transmission to the developers.

To address this, we stripped down the test cases to accommodate
the tool capabilities, project milestones and specific features we
needed to evaluate. As the tools matured, we progressively tight-
ened design constraints and added more test cases from both the
design advisors and the open-source community.

4.1.2 Responsibilities. OpenROAD-flow now maintains a suite of
designs containing source RTL and multi-platform constraints. The
suite is a combination of open-source designs provided by both

the design advisors and the community (summarized in Table 1).
This suite provides several properties critical to maintaining an
open-source flow:

• Diverse - The designs provided range from a few hundred
instances to over 400k instances. Small designs allow de-
velopers to pipe-clean and debug tools quickly. In addition,
users can run small designs quickly to validate their tool and
flow setup. Large designs provide more complex developer
test cases as well as benchmarks for QoR.

• SoC-level - OpenROAD-flowprovides full-chip designswith
I/O rings, enabling developers to test tools at the SoC level
rather than only at the block level.2

• Compact - OpenROAD-flow provides a variety of test cases,
but not so many that full regression testing becomes infeasi-
ble. The included designs are curated to be representative of
a spectrum of real-world designs.

• Real - Almost all of the included designs have been taped
out and are representative of real-world designs.

• Cross-platform - All designs are platform-independent and
can be ported across processes. Macros must be regenerated
for each platform, but the interfaces are designed to require
no source changes.

In addition to design sources, we maintain flow configuration
parameters for each design, including SDC and OpenROAD pa-
rameters. As the tools change, changing design parameters may be
warranted. For example, placement density may increase over time
as OpenROAD becomes more capable and can realize the benefits
from shorter inter-cell distances without incurring DRVs.

4.1.3 Challenges. The main challenge to maintaining the design
suite is likely tool compatibility. Many of our designs’ sources
are in SystemVerilog, which is only partially supported by Yosys.
Our solution was to automatically convert the source to Verilog
and maintain the generated source in the repository. This solution
unfortunately loses the semantics and readability of the original
designs, but it satisfied our use case of obtaining a test design. Many
new open-source efforts in SystemVerilog parsing and conversion
have arisen since the start of the OpenROAD Project, and our
existing approach may be revisited as these efforts mature.

4.2 Continuous Integration
4.2.1 Original Intent. Continuous integration was another area
which was not clearly enumerated in the original project task struc-
ture. Writing tests is often considered a responsibility of the pro-
grammers who write the code, and it was believed that regression
testing could be handled by individual developers. Such a structure
was sensible at the beginning of the project due to all of the tools
being self-contained programs. However, several issues limited the
scalability of this approach:

• Issue reporting - Even with developers being responsible
for unit tests and design advisors for integration tests, prob-
lems are reported for the tool which fails and not necessarily
the tool which creates the problem. This behavior can create

2A lack of open-source I/O cells limits what can be distributed publicly. The SkyWa-
ter130 platform plans on releasing I/O cells, and we expect to incorporate them shortly
thereafter.



Design Description Source Inst. count Macro count RTL taped out?
gcd Greatest common denominator Authors 250 0 Yes

dynamic_node 2D mesh router [10] 8,090 0 Yes
vanilla5 Vanilla-5 CPU core [11, 15] 12,300 4 Yes
ibex Ibex CPU core [4] 14,600 0 Yes
aes AES encryption [2] 15,000 0 Yes

bp_fe_top Black Parrot CPU front-end [14] 24,400 11 Yes
tinyRocket Rocket generator CPU [9] 25,100 2 No*
bp_be_top Black Parrot CPU back-end [14] 39,400 10 Yes

jpeg JPEG encoder [1] 52,600 0 Unsure
swerv SweRV EH1 CPU (core only) [3] 82,300 0 Yes

swerv_wrapper SweRV EH1 CPU (with macros) [3] 83,900 28 Yes
black_parrot Black Parrot CPU core [14] 121,000 24 Yes

ariane Ariane CPU core [17] 150,000 37 Yes
coyote Coyote CPU core [11, 15] 222,000 15 Yes

bp_multi_top Black Parrot quad-core CPU [14] 852,000 196 Yes
* several chips have been taped out using the Rocket generator, but tinyRocket RTL has not

Table 1: OpenROAD-flow design suite. Instance counts are collected post-synthesis from Yosys with a commercial cell library.

a “hot-potato” issue where developers have to pass the issue
around to figure out the root cause.

• Delayed feedback - Lag time between introducing a change
and receiving design advisor feedback inherently limits the
rate at which developers can commit stable updates.

• Portability - Some code changes may only be stable in the
developer’s environment, where the code was tested, and
unstable elsewhere.

With these problems, it became clear that investment in a con-
tinuous integration solution would be required to move forward.
With CI for both unit tests and integration tests, developers can
immediately pin down which code change broke the full-flow tests.

4.2.2 Responsibilities. The design advisors are partially respon-
sible for maintaining the Jenkins CI infrastructure for the whole
project, and wholly responsible for maintaining regression tests
for the OpenROAD-flow repository. As mentioned in Section 3.3.1,
we update the submodule reference to OpenROAD regularly and
perform full-flow regression tests on the tools. Updates which pass
all regression tests (which is currently every design in OpenROAD-
flow’s design suite) will be pushed to the master branch and be
ready for use by the community.

4.2.3 Challenges. OpenROAD’s CI has faced two main challenges.
Test scale. EDA tools are renowned for consuming significant

computation time, and OpenROAD is no different. The largest de-
signs in the OpenROAD-flow design suite can take more than 12
hours to run, meaning that running the full test suite on every
push is not feasible. Instead, we adopt the approach mentioned in
Section 3.3.1. A subset of test cases are triggered on every commit
to the development branch, and the full test suite is only run nightly.
The small tests are curated to run in a small amount of time, fail
quickly if a change completely breaks the flow, and include designs
both with and without macros. Our small test currently completes
in under 30 minutes and includes gcd, aes, and tinyRocket. Our
large test includes the full design suite and takes approximately 12
hours when fully parallelized.

Private tests. Using real, commercial platforms is critical to
testing tool correctness. However, nearly all commercial platforms
are regarded as trade secret and require significant security to
ensure their privacy. Therefore, neither typical open-source CI
practices nor closed-source CI practices fit our testing requirements.
In order to ensure security, but still report test statuses back to the
open-source repository, we ensure that the private CI server can
send statuses, but not receive any web hooks. In addition, the CI
server only tests on protected branches so that only trusted code
can be executed on the CI server.

5 TOWARDS FULL AUTONOMY
While The OpenROAD Project has made long strides toward more
automation, many complex challenges remain. Our main goals are
to (1) focus on improving the user experience in the short term,
and (2) focus on improving autonomy in the long term.

5.1 Improving User Experience
Achieving full autonomy is no small feat and we expect it to take a
significant amount of time. In the short term, we aim to improve the
user experience so that providing human input is more intuitive and
tool issue resolution is less cumbersome. The following subsections
detail key milestones we want to see from The OpenROAD Project
as designers.

5.1.1 Improved Documentation. Significant developer effort was
invested in achieving a tapeout-ready design in a 14nm FinFET
node. After completing this goal, we propose providing several
resources that users have come to expect from commercial tools:

• Documentation on all required OpenROAD-flow input files/
parameters, and instructions on how to generate/select them.

• Tutorials for setting up new designs and new platforms.
• Documentation, uniformity, and adjustable filtering for all
tool messages (info, warning, error, and critical).

• Generated documentation for OpenROAD code and APIs.



Common feedback from community members indicates that
OpenROAD-flow’s biggest hurdle is determining the source of er-
rors – whether from user parameters, user designs, or tool bugs.
We believe the points above, particularly the improvement of tool
messages, will enhance users’ abilities to resolve issues themselves.

5.1.2 Improved Access. Open software installation needs to be easy,
fast, and widely available. Currently, OpenROAD’s only officially
supported OS is CentOS 7. We advocate adding official support to
more operating systems, including CentOS 8 and Ubuntu 18, by
testing builds in our CI system. All operating systemswhich support
OpenROAD, KLayout, and Yosys dependencies should be able to
build and run OpenROAD-flow, even without official support.

We also advocate making software packages available in the
long term. The main difficulty with packaging is that OpenROAD-
flow directly depends on OpenROAD’s frequently changing API,
as mentioned in Section 3.3.1. Our current solution of git submod-
ules only works well when building from source. Versioning also
becomes an issue, as matching a version of OpenROAD-flow with
the corresponding version of OpenROAD would be cumbersome
and unintuitive. This is currently an open problem, but we believe
packaging is important to simplifying access to OpenROAD.

5.2 Reducing Manual Effort
The main goal of full autonomy is reducing the number of required
user inputs. OpenROAD-flow is currently in-line with commercial
workflows in terms of manually specifying parameters and fine-
tuning a designwith human guidance. To reach full autonomy, these
human inputs will need to be replaced with machine intelligence.

OpenROAD-flow currently requires about 50 configuration pa-
rameters to be set per-process, not including the PDN, I/O, or design-
specific configurations. For an inexperienced user, setting these
parameters correctly can be difficult. We propose aggressively re-
ducing the number of required manual parameters by replacing
them with ones automatically extracted from platform data. This
will allowOpenROAD-flow to reduce the level of experience needed
to set up new platforms, while still allowing expert users to manu-
ally tune parameters if desired.

One such example parameter is the target design utilization (cell
density). Setting this parameter can be a somewhat difficult task:
a utilization target that is too high will blow up tool runtime and
potentially provide an unroutable design; on the other hand, a
utilization that is too low can turn competitive power-performance-
area (PPA) results into non-competitive. The maximum utilization
often correlates most strongly to the process, but can also be influ-
enced by the design. To automate, OpenROAD will need heuristics
to select a utilization which balances runtime with PPA based on
process and design characteristics.

6 TOWARDS IMPROVED RESULTS
In contrast to many commercial tools, The OpenROAD Project
sees autonomy as a primary constraint and QoR as secondary. This
means that OpenROAD will focus on providing a clean and manu-
facturable design, without human intervention, over improvements
to PPA. However, improving QoR is not always orthogonal to au-
tonomy, as improved algorithms can lead to reductions in design
rule violations. Improving QoR is also important for increasing

OpenROAD’s user base, as discrepancies in QoR can lead users
towards closed-source proprietary tools.

6.1 Inter-tool Feedback
OpenROAD’s shift from standalone binaries to an integrated app
was a major advancement due to the common database substrate.
This common substrate allows tools to interact with each other
much more easily, but OpenROAD is only beginning to take ad-
vantage of this. We advocate focusing on mechanisms which allow
feedback between tools to enhance QoR.

For example, the global and detailed placers focus mainly on
half-perimeter wire length and cell displacement as their main opti-
mizationmetrics. However, pin access is a primary constraint which
can determine whether the router will be able to perform clean rout-
ing. Because of this limitation, users may try to reduce placement
density, increase cell padding, and/or disable use of certain standard
cells to avoid DRVs. Yet, macro placements in the floorplan, or the
setup of global routing layer resources, could ultimately turn out
to be “the culprit”. We would like to see OpenROAD incorporate
mechanisms to make upstream tools more aware of downstream
problems so that users can save iteration time and achieve higher
QoR. Simple versions of this might see the router’s pin access
analysis invoked by the detailed placer, or the global router being
run under the hood of the placer. The common database substrate
could also enable greater empowerments of OpenROAD’s tools –
e.g., the router curing a pin access-induced DRV by modifying the
detailed placement.

6.2 Automatic Clock Gating
Automatic clock gating (ACG) is one of the most significant features
that OpenROAD-flow does not yet support. Traditionally, ACG is
implemented as part of synthesis, but Yosys does not currently
support ACG. Due to Yosys being a third-party tool with separate
infrastructure, addition of ACG may be difficult in that respect. We
believe that the benefits to power and area are worth pursuing. We
advocate that OpenROAD investigate a path towards implementing
ACG, whether by upstreaming changes to Yosys, or by working
within OpenROAD on a post-synthesis netlist.

6.3 Parasitic Extraction
Parasitic extraction is a key step which has been missing from
OpenROAD-flow. We have worked around the issue by (1) extract-
ing per-unit parasitics, (2) multiplying by wire length, then (3)
derating to correlate with extracted parasitics. Parasitic correlation
can be a cumbersome process, and more importantly, still relies on
an external golden tool for accurate data. The project has invested
significant effort toward bringing up a parasitic extraction tool,
OpenRCX [5], which is expected to be introduced to OpenROAD
soon.

OpenRCX will significantly aid in parasitic calibration as it re-
duces the trial and error from per-unit parasitics, but it still faces
the issue of calibration from a golden model, which often uses
data in an encrypted, unreadable format [12]. We advocate that
OpenROAD explore two different paths for parasitic extraction:



• Automatic golden correlation - Proprietary goldenmodel
use is unavoidable for most commercial platforms. Commen-
surate with OpenROAD’s vision, working with these golden
models should be as automated as possible. For example,
OpenRCX creates DEFs to provide to a 3D solver, and the
user need only provide the corresponding parasitics (SPEFs)
back to OpenRCX.

• Full-stack solution - The release of the open-source Sky-
Water130 platform provides a tremendous opportunity for
OpenROAD. We advocate that OpenROAD develop a fully
open-source parasitic extraction stack using the PDK.

7 CONCLUSION
The OpenROAD internal design advisors have greatly helped Open-
ROAD to get off the ground. Our expectations changed over time
as we better understood the challenges facing open-source EDA
flows, and we have learned important lessons along the way:

• EDA is not typical open-source software - Open-source
projects typically have access to open data, whereas EDA
must work with proprietary data to be practical. Proprietary
data necessitates additional infrastructure and maintenance.

• Test early and test often - An RTL-to-GDS tool has an
extraordinarily high minimum viable product of “placed and
routed chip”. Breaking down test cases into appropriate scope
and complexity for early testing is incredibly important.

• Expect the unexpected - Even with significant EDA ex-
perience across our team, several unforeseen tasks arose.
Project members stepping up to handle tasks outside their
expertise significantly helped to keep the project moving
forward.

We also have an optimistic outlook for OpenROAD’s future, and
we have identified some features that would offer the most benefit
from a designer’s perspective:

• Improved user experience - Intuitive, accessible, and doc-
umented software is important for reducing user effort.While
full automation is a long-term strategy to improving the user
experience, improving documentation and accessibility can
provide quick returns on investment.

• Improved quality - The easier it is to get high-quality re-
sults from OpenROAD, the easier it will be to get community
investment in it. Features such as inter-tool feedback, au-
tomatic clock gating, and accurate parasitic extraction can
significantly improve QoR.
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